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Abstract

In this second part of a series of two papers we develop an asynchronous event-driven First-
Passage Kinetic Monte Carlo (FPKMC) algorithm for continuous time and space systems involving
multiple diffusing and reacting species of spherical particles in two and three dimensions. The
FPKMC algorithm presented here is a generalization of the method described in the first part
of this series of papers and is implemented in a robust and flexible framework. Unlike standard
KMC algorithms such as the n-fold algorithm, FPKMC is most efficient at low densities where it
replaces the many small hops needed for reactants to find each other with large first-passage hops
sampled from exact time-dependent Green’s functions, without sacrificing accuracy. We describe
in detail the key components of the algorithm, including the event-loop and the sampling of first-
passage probability distributions, and demonstrate the accuracy of the new method. We apply
the FPKMC algorithm to the challenging problem of simulation of long-term irradiation of metals,
relevant to the performance and aging of nuclear materials in current and future nuclear power
plants. The problem of radiation damage spans many decades of time-scales, from picosecond spikes
caused by primary cascades, to years of slow damage annealing and microstructure evolution. Our
implementation of the FPKMC algorithm has been able to simulate the irradiation of a metal
sample for durations that are orders of magnitude longer than any previous simulations using the

standard Object KMC or more recent asynchronous algorithms.



I. INTRODUCTION

In the first part of this series of two papers we described a novel diffusion Kinetic Monte
Carlo (KMC) algorithm for simulating diffusion-reaction systems in one, two, and three
dimensions. The algorithm cures the notorious inefficiency of standard KMC algorithms
[1] at low densities of the reacting and diffusing particles: when diffusion is simulated via
a sequence of small hops, many such hops are needed to bring reactants together and the
standard algorithms are unable to progress over sufficiently long time scales. First proposed
in Ref. [2] and described in detail in the first part of this series of papers, the essential idea
behind the new First Passage Kinetic Monte Carlo (FPKMC) algorithm is to replace the
long sequences of small hops with large super-hops sampled from an exact Green’s function
derived for a simpler auxiliary problem in which the diffusing particles are spatially isolated
(protected) from each other and thus diffuse independently. The resulting algorithm is not
only fast even at low densities, but it is also exact (modulo numerical precision) and does
not, in principle, introduce approximations employed in other accelerated algorithms, such
as discretizing continuum diffusion into a sequence of hops [1] or neglecting less-probable
reactions [3, 4].

In the first part of this series of two papers we focused on the basic ideas behind the new
FPKMC method and illustrated its application in the context of simple models in which
identical or nearly identical particles randomly walk on a lattice or in the continuum. In
this second part we extend the algorithm to more general and complex diffusion-reaction
systems, such as multiple species with different sizes and diffusion coefficients, competing
reaction mechanisms, e.g. particle conversion, death and insertion, absorbing boundary con-
ditions, focusing on the case of continuum isotropic diffusion without advection. We will give
a general and formal presentation of the FPKMC method as an event-driven asynchronous
algorithm implemented for the case of additive hard spheres in two and three dimensions.
We will present algorithmic details, including detailed pseudo-codes, for a flexible yet ef-
ficient implementation of the FPKMC method capable of handling a variety of problems
of interest, including radiation damage in metals [3, 5, 6], dopant implantation [1], surface
reactions [7, 8], coarsening [9], (bio)chemical reaction networks [4, 10, 11], and others. We
validate the new algorithm by comparing our simulation results against the Object KMC

BIGMAC code [1] for several non-trivial test problems. We then apply the new algorithm



to simulations of irradiation damage accumulation in iron and validate the new method by
comparing to results obtained using the existing object KMC code LAKIMOCA [6]. Finally,
we demonstrate that the new FPKMC algorithm allows to extend the time horizon of ra-
diation damage simulations well beyond current computational limits and to reach, for the
first time, the long time-scales of material life in a nuclear reactor (section V B 3).

In the remainder of this section we specify our diffusion-reaction model and briefly discuss
asynchronous event-driven algorithms. In Section II we describe the core of the FPKMC
algorithm, namely, the use of exact time-dependent Green’s functions for a suitably-defined
separable sub-problem. The new method is rather general and extends to a variety of prob-
lems where diffusion plays a role, including also discrete (lattice) systems and more general
types of diffusion. In Section III we discuss numerical evaluation of the time-dependent
Green’s functions for the case of hard spheres. Section IV gives further details, including
detailed pseudocodes for key components of the FPKMC algorithm. In Section V we present
numerical validation of the algorithm along with some performance figures, and finally, in

Section VI we offer a few concluding remarks.

A. Model Representation

Consider a simulation of the time evolution of a collection of N diffusing reactive particles
in d-dimensions. For simplicity, we will focus on the case of hard spheres of fixed radius
diffusing in a homogeneous medium. In the absence of reactions or surfaces and assuming
the particle started in some specific point rq at time 0, the probability ¢(r,t) of finding the

same particle in position r at time ¢ is the solution to the time-dependent diffusion equation
d,c = DV?c and ¢(r,0) = 6(r — 1), (1)

where D is the particle diffusion coefficient.

At any point in time, the state of the system is characterized by its configuration Q =
(d1,---,9n). The number of particles N may itself vary with time. Each particle i can
possess an arbitrary number of attributes a; in addition to the position of its centroid r;,
q; = (r;,a;). These attributes include a species 1 < s; < Ny, radius R;, diffusion coefficient
D;, as well as other problem-specific attributes such as charge, mass, etc. Some attributes

may be shared by all particles of a given species, for example, all particles of a given species



may have the same diffusion coefficient.

The symmetric reaction table R of size Ns(Ng + 1)/2 specifies the type of two-particle
reaction that occurs when particles A and B of species a and 3 collide. In particular, R,z can
specify that particles of species o and 3 do not interact with each other. Example of possible
reactions are annithilation A+ B — 0, chemical reaction A+ B — (', including the special
case of absorption A+ B — A, coalescence A+ B — AB, and reflection A+ B — A+ B.
The decay table Dy} specifies an arbitrary number N§ of possible single-particle reactions
for particles of species a, assumed to occur as a Poisson process with rates I'¢ = (72)~1.
Examples of decay reactions are splitting A — B+ C, including the special case of emission
A — A+ B, transmutation A — B, death A — 0, and jump (kick) A — A. The positions of
any products of the single- or two-particle reactions are assigned depending on the positions
and attributes of the reactants, sometimes with additional random displacements. If hard-
wall boundaries are present, particles colliding with a hard wall k they may be absorbed or
reflected with certain pre-specified probabilities.

The insertion rates B, specify the rate of insertion (birth) for particles of species o per
unit time per unit volume. Typically particles are inserted randomly and uniformly inside

the simulation volume.

B. Asynchronous Event-Driven Algorithms

The First-Passage Kinetic Monte Carlo (FPKMC) algorithm belongs to the category
of asynchronous event-driven (AED) algorithms [12]. The algorithm is similar to the well-
known event-driven molecular dynamics (EDMD) algorithm [13], with the essential difference
that in FPKMC particle dynamics is stochastic rather than deterministic [14]. Just like the
hard-sphere Molecular Dynamics, FPKMC is an ezact algorithm (within numerical preci-
sion) because the two-particle problem in FPKMC can be solved exactly. By its exactness
we mean that FPKMC samples evolution trajectories of N random walkers from the correct
probability distribution, as given by the exact solution of an appropriate Master equation.

Event-driven algorithms evolve the state of the system by updating it only when certain
non-trivial events occur, skipping the time elapsed between such events as uninteresting,
e.g., unchanged or analytically solvable. In the asynchronous algorithms, there is a global

simulation time ¢, typically the time when the last processed event occurred, and each



particle ¢ is associated with a point in time t; < ¢, typically the last time it participated in
an event. This is to be contrasted to synchronous event-driven algorithms, where all of the
particles are at the same time ¢, such as the n-fold (BKL) algorithm for performing kinetic
(dynamic) Monte Carlo simulations [15]. The classical n-fold algorithm hinges on the fact
that the state of the system does not change between the events, as is common in lattice
models where particle positions are discrete. For example, the atoms may vibrate around
the lattice sites and occasionally hop to nearby sites. In the model considered here, however,
the positions of the particles are continuous and continuously changing even between events.

An asynchronous simulation progresses by processing the event at the head of the queue,
scheduling new events for any affected particles, and then updating the event queue. This
generic procedure is summarized in Algorithm 1. The main types of events in FPKMC and
their scheduling and processing will be described in detail in the next section.

Each particle ¢ stores the time it was last updated ¢; along with a prediction for its
impending event (t5,p;,v;), specified via the predicted time of occurrence (timestamp) ¢,
the event partner p;, and the event qualifier (type of event) v;. When it is clear what particle
we are referring to, we will omit the subscript ¢ for simplicity. If several different events are
possible for a given particle then the first event scheduled to occur (i.e., the one with the
smallest t.) is chosen. The event times for all particles and event times for any external
events are stored in a priority queue (e.g., a heap) called the event queue. If the partner
p = j is another particle, then event prediction for the partner particle j is not stored in the

event queue to avoid sorting duplicate events with equal timestamps.

Algorithm 1: The event loop in the asynchronous event-driven algorithms.

1. De-queue the event at the top of the event queue, of type v and timestamp ., to find the

next particle ¢ to have an event, or the next external event to occur.

2. Advance the global simulation time ¢t <« t., and update the configuration of all involved

particles to the current simulation time (e.g., t; < t¢).

3. Process the event. If necessary update the other particles (e.g., if p is another particle) to
the current simulation time and re-schedule their events. If an external event or particle 7

no longer exists, cycle to the next event in the queue.



4. Schedule a new event for particle i at time t., and insert it into the event queue with the

new timestamp (key) t; < te.

5. Cycle back to step 1.

II. FIRST-PASSAGE KINETIC MONTE CARLO ALGORITHM

A detailed description of the FPKMC algorithm, including pseudo-codes, is given in
Section IV. Here we only briefly discuss the most important components of the algorithm.
Although this description is intended to be self-contained, the reader is referred to the first
part of this series of papers for a more intuitive introduction.

The essential idea behind the FPKMC algorithm is to break the N-body problem into
a collection of independent one-body or two-body (pair) problems that can be solved ana-
lytically. This is achieved by protecting each particle ¢ with a protective region P;, C; C P;,
where the hard core of particle 7 is denoted by C;. An unprotected particle has P; = C;.

In the case of hard spheres, C; = {r|||r — r;|| < R; }, the protective regions themselves are
(P)

spheres of radius R§7’) > R; centered at r;”’. Thus, a spherical particle of radius R; can be

thought of as a point particle contained inside a protective sphere of radius RZ(P) — R;, i.e.

protective sphere concentric with the particle simplifies implementation.

I‘Z(P) - I'zH < RZ(P) — R;. In general it is not required that r§7’) = r?, however, making the

The cube-shaped particles and protections described in detail in part I can be thought of
as spheres but with an L — 1 distance metric function ||Ar|| = max;<x<q Ary, instead of the
L — 2 Buclidean distance ||Ar|| = /32¢_, Ar2 characteristic of spheres. Except when the
differences are essential, we will not explicitly distinguish between spheres and cubes with

the understanding that distances are measured in an appropriate norm.

A. Mathematical Justification

The goal of the FPKMC algorithm is to generate a stochastic trajectory of the simulated
system N Brownian particles with the correct probability. To achieve this goal the FPKMC
algorithm samples the system’s configuration R = {ry,...,ry} at time ¢ from the Green’s

function of the Master equation. In the considered case of particle diffusion, the Master



equation is a diffusion equation in the dN-dimensional space for the probability density
G (R, t;Ry) to find the system in configuration R at time ¢, starting from Rg at time tq = 0,

% =D - V3G in Q, where G(R,0) = §(R — Ry) and G(99,t) = 0,

where D = {Dy,..., Dy} is a (block-diagonal) diffusion tensor. Here 2 denotes the region
of phase space bounded by the non-overlap conditions between the hard particles. As soon
as the configuration leaves region {2 through the bounding surface 9€) a hard-sphere collision
occurs 1.

What needs to be demonstrated is that the FPKMC algorithm correctly samples from
G(R,t;Ry) even if the latter Green’s function is unknown. More specifically, the algorithm
should correctly sample the time ¢ < ¢ and configuration R € 9 when the first collision
occurs or, alternatively, sample a configuration R given that no collision has occurred by
time t.

Rather than trying to solve for the exact Green’s function G(R,¢;Ry) - a difficult task
indeed given the complicated shape of the collision boundary 0€) - the FPKMC algorithm
relies on a much simpler Green’s function obtained for an auxiliary sub-problem in which

the particles are spatially protected against each other,

% =D - V3G in Qy where Go(R,0) = 6(R — Rg) and G(9Q,t) = 0,

where now 2y C €2 is a Cartesian product of subspaces, each of which is a domain only of
the coordinates of a single particle, Q) = P; ® Py ® --- ® Py. This sub-problem is fully
separable and can be decomposed into corresponding sub-problems for the Green’s function
gi(r, t; 1Y) for each of the independent particles

99
ot

to give Go(R, t; Rg) = Hf\il gi(ri, t; 1Y),

= D;V?g; in P; where g;(r,0) = §(r —r?) and ¢;(0P;,t) = 0,

As elaborated in Ref. [16], using Green’s theorem it can be shown that
t
G(R t:Ro) = Go(R 6 Ro) + [ [ 3, (RERa)G(R,t - ER)OS,
RE&QO =0

where Jn(f{, t:Ry) = -D- VnGo(f{, t: Rg) denotes the normal component of the current at

the auxiliary surface 0€)y. The above equation has an obvious probabilistic interpretation:

I Exactly how the particles react on collisions is outside the scope of the FPKMC algorithm.
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the system’s configuration at time ¢ can be sampled by first sampling an exit time ¢ and
location R € 98 on the auxiliary boundary. If ¢ < ¢, the exit location is discarded and the
system’s configuration is sampled from (the normalized form of) Go(R,t;Rg). Otherwise
one recursively repeats the process by constructing a new )y and samples an exit location
and time starting from the new time origin, until the walk hits 0y (this requires at least one
pair protection). In this case, the exit location on the first-passage boundary 0€), serves as a
source for subsequent propagation since the random walk is a memory-free Markov process
that can continue from the last sampled point forgetting the past.

Owing to the separability of the protected walkers, the current is expressed as [16]

J (R t: R, Z (H g I'l:t I'z > [_vngm(fm>t~§ r'[r)n)] )

m l#m

where now m denotes the walker that first leaves its protection through r,, € 0P,, at time
t. The probabilistic interpretation is as follows: first select a walker m and the associated
t = t,, with the correct probability, and then sample positions for all other walkers from
(the normalized forms of) g;’s. It is shown in Ref. [16] that m and the associated  can
be sampled simply by choosing the minimum among independently sampled exit times, one
time for each walker.

Numerical efficiency of the FPKMC algorithm, however, derives from an important ad-
ditional observation not used in Ref. [16]: it is not necessary to sample g; for the walkers
that have not exited their protections. The exit times for all those walkers can be reused
since their distributions have not changed. One can of course sample a new position r; € P,
at time ¢, and then sample a new exit time from g¢;(r,t — ¢;r;). However, as described in
detail in part I, this will give an exit time and location with exactly the same distributions
as those sampled originally. Therefore, those particles that have not exited their protections
can be left in the queue or updated to the current point in time at will. For computational
efficiency, the first-passage predictions for walkers are updated only when this becomes nec-
essary, namely, for the walker m with the shortest exit time in the queue and, perhaps, for

one or few other walkers whose protective regions need to be modified.



B. First-Passage Probability Densities

If the protective region P; of a particle ¢ is disjoint from the protective regions of other
particles, then the diffusive motion of the particle is independent of the motion of other
particles, as long as the particle is still inside its protection. The motion of the particle
inside its protection is a one-body diffusion problem that can often be solved analytically.
The FPKMC algorithm entails sampling from the following two probability distribution
functions (PDFs) for a particle initially at r = 0 at time ¢ = 0:

1. The first-passage probability distribution J,(t,F) that the particle first leaves its pro-
tective region at time ¢, when it is at position ¥. We call the time ¢ the exit time
and the position 1 the exit location. For a point particle, r is on the surface of the

protection, T € OP;.

2. The conditional no-passage probability distribution ci(r;t) that the particle is at po-
sition r € P; \ OP; at a given time ¢, given that it has not left its protection by time
t.

These two probability distributions are the basic elements of the theory of first-passage
processes [17] and are termed hereafter the first-passage and no-passage propagators, re-
spectively. Appropriate solutions for the case of cube-shaped particles and protections were
presented in the first part of this series of papers. Single-particle propagators for spherical

particles inside spherical protection regions will be given in section IIT A.

1. Pair Propagators

In the FPKMC algorithm, the particles are protected by disjoint protective regions al-
lowing the use of single-particle propagators to evolve the system. At some point in time,
however, two particles 7 and 7 will collide and thus cannot be protected with disjoint regions.
For efficient handling of collision events, nearly-colliding pairs are associated (partnered) and
protected by a pair protection region P;;. We will focus on the case when P;; = P; U'P;
consists of intersecting protections around each of the two particles, P; N P; # (0. If either

one of the particles leaves its protective region the pair disassociates.



Note that, for the case of additive hard spheres that we consider here, triple collisions
never happen. Thus, it will always be possible to protect two colliding particles ¢ and j
as a pair even if there is a third particle k nearby. As the simulation time approaches the
collision time, eventually ¢ and j will be much closer to each other than to k and can thus
be pair-protected with protective region P;; disjoint from Pj. For non-additive hard spheres
or other types of collision rules pair protection may not be sufficient and in such cases the
approximate handling of interactions discussed in Section IV H will be useful.

For an associated pair of particles, in general, the FPKMC algorithm requires sampling

from the following two distributions:

1. The first-passage probability distribution J5(%, T;, I;) that at time t, when the parti-
cles are at positions r; and r; respectively, one of two particles of the pair leaves its

protection for the first time, or particles ¢ and j collide and react for the first time.

2. The conditional no-passage probability distribution cy(r;, r;;¢) for the positions of the
particles at a given time ¢, given that neither ¢ nor j has left its protection, nor a

collision has occurred.

We term these two distributions two-particle or pair propagators. As discussed in part I of
this series, the pair propagators allow further factorization into two single-body propagators.
The first propagator is for the difference walker rgf) = Ar; — Ar;, where the condition
’ rgf) H = R; + R, corresponds to a collision. The second propagator is for the center walker
©)

r;;’ = w;Ar; + w;Ar;, where w; and w; are appropriately-chosen weights. The protections

and the propagators for the difference and center walkers are discussed in further detail in

Section III B.

2.  Hard-Wall Propagators

In some situations periodic boundary conditions may not be appropriate and instead hard-
wall boundaries could be used along certain directions of the simulation box. Furthermore,
additional absorbing or reflecting surfaces may be need to be inserted in the simulation
volume, for example, to represent grain boundaries in a polycrystalline material. Particle
and pair protections should be disjoint from any hard-wall surfaces or boundaries W in order

to ensure that single-particle and pair propagators can be used. However, some particle ¢ will
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eventually collide with W and, thus, can not remain protected from WV forever. Therefore,
particles near a wall W are associated (paired) with the wall itself and protected with a
hard-wall protection P; that is disjoint from all other single-particle and pair protections
but intersects wall W, P; N W = 9P}V # (). For such particles, we will use of the following

hard-wall propagators:

1. The first-passage probability distribution Jyyy (£, T) that the particle exits its protective

region or collides with the hard wall at time ¢, when it is at position T.

2. The conditional no-passage probability distribution cyw (r;t) that the particle is at
position r € P; \ IP; at a given time t, given that it has not left its protection or

collided with the wall by time ¢.

C. Summary of FPKMC Algorithm

As already discussed in Section I B, the FPKMC algorithm processes a sequence of events
in the increasing time order in an event loop. Each event has a qualifier (type of event)
and is associated with a primary particle, which may have an event partner p;. In the
implementation of the algorithm described here the particles can only have one partner,
either another particle forming a pair, or a hard wall. In general one can have multi-particle
events and treat a group of particles together. We discuss this modification again in Section
IV H and will report on its implementation details in future publications.

The most important types of events are first-passage propagations, in which a particle or
pair reaches the boundary of its protective region or collides. Such events are scheduled and
processed by sampling from appropriate first-passage distributions, and then processing any
reactions, as appropriate. Following a propagation, a new protective region for the involved
particle(s) is constructed that is as large as possible without overlapping with other existing
protective regions. This may require destroying the protection of other (third party) particles
or pairs whose protections block the construction of new protective regions. That is, if an
unprotected particle gets too close to the protective region of another particle or pair, that
particle or pair is brought to the current point in time using the appropriate no-passage
propagator, and then new protective regions are constructed for all unprotected particles.

One can keep a list of all unprotected particles or simply schedule immediate re-protection

11



events for them (i.e., place them at the head of the event queue).

Ideally, particles should be protected in such a way that the expected minimal first-
passage time is maximized. That is, the protections have to be as large as possible, with
more space given to particles with higher diffusion rates. If all particles are unprotected, the
following method can be used to build optimal particle protections. First consider just two
particles and protect them by two concentric non-overlapping protection domains 2; and
y. The expectation time for the earliest of two exit times is maximal when domains €2
and {25 touch each other and their linear dimensions are proportional to the square roots of
two diffusion coefficients \/D; and v/D,. Obviously, in this case the expected first passage
times for both particles are equal. Let us now define the distance between any two particles
as the expectation for the their earliest exit time. First find the nearest neighbors in the
whole system. If possible, protect them as a pair, otherwise, protect them individually
with touching protective regions. Then, recursively protect the next nearest neighbors. A
simple modification of this algorithm makes it applicable even when only a few particles are
unprotected and one of them needs a new protection. One first finds the largest possible
protection for that particle by performing a neighbor search over all nearby protected or
unprotected particles. If the limiting neighbor is protected, one can simply protect the
particle with a protection that touches the limiting protection. Otherwise, one recursively
applies the same procedure to the unprotected limiting neighbor. Detailed pseudocode for
this procedure is given in Section IV E.

However, it is highly non trivial to determine the optimal way to protect the particles in a
dynamic context, when particles are created, destroyed, and move with widely differing diffu-
sion coefficients. Specifically, following a single event, an optimal re-partitioning of the space
into protective regions could be constructed, however, this would require destroying multiple
existing protections and thus multiple propagations and new event predictions. Obviously,
it is necessary to find a reasonable trade-off between re-building too many protections and
giving all of the particles sufficient room to move over sufficient distances compared to other
particles. Intuitively, the algorithm’s performance will be optimized by giving more protec-
tive space to the particle or a small subset of particles that dominate(s) the event queue, up
to the point when giving more room to these fast particles no longer increases the average
time interval between subsequent events (or actually makes efficiency worse by squeezing the

other (slow) particles too much). In Section IV G we will describe space partitioning strate-
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gies we applied in several specific situations encountered in FPKMC simulations. While
some of our strategies are relatively general and have tuning parameters to cater to different
specific cases, understanding of the problem at hand helps considerably in optimizing the
algorithm performance.

We conclude this section with a few additional notes on the components of the FPKMC al-
gorithm. Whenever an event creates new particles, a check is made to determine whether the
newly inserted particle overlaps with any existing particles. If it does, appropriate reactions
are immediately processed and the overlap check is repeated until no overlap is detected.
Additionally, unlikely the mobile particles, the immobile particles remain unprotected and
have no partners, but other particles can have them as partners. This is particularly useful
when there are large immobile particle (e.g. clusters of monomers) that are surrounded by
a dense pool of small mobile particles (e.g., monomers). The mobile particles do not affect
each other for as long as their protections do not overlap, even if they share the same immo-
bile cluster as a partner. However, when an event changes the configuration of the immobile
cluster (e.g., it absorbs a monomer), all its partner particles are brought to the current time

and re-protected.

III. SINGLE PARTICLE AND PAIR PROPAGATORS

In this section we describe first-passage and no-passage propagators for spherical particles.
The propagators for single particles are similar to the ones described in paper I of this series
for cube-shaped particles and are discussed here only briefly. The reader is referred to
Appendices A and B of paper I for more information. However, the pair propagators for
two spherical particles are considerably different than those for cubical particles and are

presented in more detail.

A. Single Particle Propagators

The FPKMC algorithm requires first-passage and no-passage propagators for a single
spherical particle A of radius R4 with diffusion coefficient D,, starting from an initial
position Y at the center of a protective sphere P, of radius R, > R4 concentric with the

particle. This reduces to finding the propagators for a point Brownian particle starting at
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time ¢ = 0 from the center of sphere with radius R = R, — R4. Due to the full rotational
symmetry, the first-passage PDF J; (%) is a function of time only, and the exit location on the
protective sphere P4 can be sampled from a uniform distribution. Similarly, the no-passage
PDF c¢;(r;t) becomes a function of time and radial distance only, while the exit position can
be sampled from a uniform distribution on the sphere of radius r.

Expressing the distances and time in the reduced units of R and R?/D, the propagators
can be obtained by solving the diffusion problem for a point Brownian particle with diffusion

coefficient D = 1 inside a sphere of unit radius RL = 1,

re(r,t)]  0%[re(r,t)]

ot or?

with the boundary condition ¢(1,¢) = 0 and the initial condition ¢(r,0) = d§(r). We focus
on two useful series expansions of the solution, one that converges quickly at short times

(t < 1/4),

o(rt) = (4xt)2 Y (1+==)exp I

m=—00

- 2m {_ (r+ 2m)2]

and another that converges quickly at long times (¢t = 1/7%),

252¢

1 o0
c(r,t) = o Z msin(mmr)e ™.
m=1

(3)

Below we use these two solutions to obtain the propagators and to construct over-estimators
and bounds necessary for efficient rejection sampling.
1. First-passage propagator

Integration of ¢(r,t) over the unit sphere yields the survival probability in two infinite

series forms, a short time series

S() = S ), (4)
where

and a long time series

14



2

S(t) = —2a* > (—1)"mPe . (5)

In order to use a rejection sampling procedure similar to the one described in Appendix
A of paper I, we select a switchover time 7 such that 1/7% < 7 < 1/4 and use the piecewise

smooth function C'(t) as an over-estimator for the survival probability at all times,

o) = gs((:)) Ss(t) for t <7
Sy(t) for t > T,

where S,(t) = (§ —2)e ) [(271’)%75%] and S)(t) = 272" are the leading terms of the short-
and long-time series for the survival probability. A sample exit time t is obtained by solving
C(t) = &, where £ is random number uniformly distributed in [0,1). Solving this equation
for t < 7 can be done efficiently by Newton iteration. To obtain the sequence of converging
bounds necessary for rejection sampling, let us note that the terms of the long-time series
alternate in sign and decrease in magnitude with increasing m and can themselves serve as the
needed bounds. For the short-time series we can bound the remainder R, (t) = S(t) — S,(t)
with

1 [(1+2m)?

0 < R,(t) < (4nt?)

~ Lt 2m) exp [_M} |

4t

In our implementation we use 7 = 0.243, which gives a rejection ratio of about 0.6%. The
maximum relative error in the survival probability is C'(¢t)/S(t) — 1 = 7- 1073, so that C(¢)

is an acceptable approximation for S(t) without rejection sampling.

2. No-passage propagator

To enable efficient rejection sampling, we need a tight over-estimator C(r,t) for the no-
passage PDF at arbitrary time ¢. Here we construct such a function by stitching together
two different expressions appropriate for times shorter and longer than a switchover time
7 (1/7* < 7 < 1/4). For times t < 7 the leading term (m = 0) in the short-time series

solution (1) is a reasonable over-estimator:

2

Cy(r,t) = (4mt) 2.
On the other hand, for times t > 7 a good over-estimator is given by
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Sampling from Cy(r,t) entails evaluation of one inverse error function while sampling from

Cy(r,t) = erfc(m?t) | .

C,(r, t) requires solving for r the following equation

L.
—sinmr —rcosnr =&,
T

where ¢ is a random number uniformly distributed on [0, 1). The solution can be found by
Newton iteration using r = {’/% as a starting guess if ¢ < 1/2 andr =1 — %m if
€>1/2.

The same two series solutions can be used to obtain a sequence of increasingly tight

bounds on the no-passage PDF. For short times, we approximate ¢(r, t) with the partial sum

— 2k (r +2m)?
Cn (1, 1) = kz_m(l + 7) exp {_T} ,

and use the following lower and upper bounds for the remainder term, R; < ¢(r,t)—c,,(r,t) <

Ry,

9 9)2
R — <1_2m+1+t>exp[_(r 2m 2)1_’_%6}@{_(7“%—2771—1—2)}
r r

4t 4t
1+¢ 2 2)? 2t —2m —2
R, = (122N o | E2mE27 28 (r=2m =2
T 4t T 4t

For long times, efficient bounds on the no-passage PDF are obtained from the following
bound for the magnitude of the remainder

o

k 2.2 T 2.2
Arr? in(k —mirit| - [2 1 :| —(m+1)*w t
|47y k:EmH " sin(k7r)e | < |27r(m+1) + — e

B. Pair Propagators

In this section we discuss particle protection and propagators used to enable collisions
of pairs of particles. Consider two spherical Brownian particles A and B of radii R4 and
Rp and diffusion coefficients D4 and Dpg. Each of the particles is protected by a sphere of

radii RZ /B> R4 p concentric with the initial particle positions Y /B When two protective
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spheres overlap, i.e., R, + R, > rap = |[ra — rpl|, the particles can collide while diffusing
within their individual protections. Sampling of particle collisions is enabled by transforming
the two-particle diffusion problem into two single-particle problems, one for the difference
walker rp = r4 — ry and the other for the center walker ro = wuary + wprg. A collision

occurs when the difference walker reaches the collision radius rp = ||[r4 — rg|| = Ra+ Rp. It

82

(.)I_CTD in the LaplaCIan

can be shown that, with the choice wpaD4 = wgDp, the cross term
operator vanishes which means that the six-dimensional PDF for the pair factorizes into
a product of two three-dimensional PDFs, one for each walker. The resulting center and
difference walkers diffuse independently with diffusion coefficients Dp = Dy + Dp and
Do = wiDA + w%DA.

There is considerable freedom for choosing weights w4 and wg and protections for the
center and difference walkers. To simplify the implementation, the center and difference
walkers are each protected by spheres of radii R}, and RZ centered around their initial
positions. It turns out that choosing R}, = RFE maximizes the use of space within the
overlapping protective spheres of the two original particles. Furthermore, by setting Do =
Dp the expectation values for the exit times for the difference and center walkers become

similar and nearly maximal. This leads to the following optimal choice for the coordinate

transformation

'p rq4—Tp

| D
D A
ro = D_jj rp -+ D—BI'B.

Finally, the condition that a collision should be possible requires that RS > §, where § =

rap — (R + RE) is the initial inter-particle gap. We take
RE = R = (2 + a)d,

where o > —1 is a parameter in the algorithm. We find that o = 1 or RZ, = 2§ is a reasonable
choice but, when there is more room available, one can increase a up to a maximal value a4,
specified in the code. It can be shown that, as the difference and center walkers propagate
inside their own protections, each of the two original particles remains within a sphere of

radius

Dy+ D
RE = Rajs + 2+ a)o /D oAt VI8
Dy + Dp
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This defines the size of the protective region around each original particle that is minimally
necessary to allow pair protection, i.e., the minimal distance to the next-nearest neighbors

of particles A and B which allows for pair protection.

1. The Difference and Center Propagators

With the above coordinate transformation, the first-passage problem for the pair of origi-
nal particles separates into two independent first-passage problems for the center walker and
the difference walker. The overall first-passage time ¢ is the smaller of the two first-passage

times. Thus, the possible first-passage events for the pair are:

Collision when the difference walker reaches the surface rp = ||[r4y — rg|| = R4 + Rp.

Dissolution when the difference walker reaches the surface rp = R7. The center walker
has not yet left Pc and can be updated using the single-point no-passage propagator
ci(Arg;t).

Displacement when the center walker reaches the surface rc = RE. The difference walker

has not yet left Pp and can be updated using a special single-point no-passage prop-

agator cp(Arp;t) (see the next section).

Because the center walker is restricted inside a spherical protection Pc of radius RE, the
same FP and NP propagators described earlier in Section III Afor single particles can be
used for this walker.

Unlike the case of cube-shaped protections considered in paper I, protection region of the
difference walker for a pair of spherical particles cannot be a sphere. Among several choices
considered, in our current implementation we opt to protect the difference walker with a
cut sphere, i.e. Pp = {rp|||Arp|| < R}, and |rp|| > R4+ Rp}, where Arp = rp — r9,.
Lacking the spherical symmetry and having more complex geometry of the first-passage
surface (see Fig. 1), finding a usable analytical solution for the propagators in this protective
volume is more involved than for the cubes. Various approximations for the distribution
of exit times and locations Jp(#,¥p) for cut spheres have been considered in the context
of diffusion Monte Carlo [18, 19]. However, the previous work used only time-averaged

solutions but not the full time-dependent Green’s function cp(rp;t). In the next section we
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Figure 1: Protective region Pp for the difference walker in the case of two hard disks in two
dimensions. In this case Pp is a cut disk (blue) and the propagator cp(rp;t) is analytically

complex.

describe a practical alternative to the full analytical solution of the first-passage problem

inside the cut sphere.

2. Hopping-Based Propagators

Rather than trying to solve for the exact propagators for the center walker in a cut sphere,
we resort to generating a random walk through a sequence of small displacements in ran-
domly chosen directions. In principle, restricting the hops to sufficiently small displacements,
such discrete walks can approximate the samples from the exact continuum distributions to
any desired accuracy. In practice, we use random walks only for particle pairs that have been
brought close to collisions through the use of exact continuum single-particle propagators.
For such pairs, the walks are typically short and do not entail high computational cost.

The time when the trajectory brings the difference walker to the boundary dPp of the
cut sphere Pp is taken as an approximation for the first-passage time ¢ and the location
where the sampled walk hits the surface OPp is an approximation to rp. At every hop a
constant increment At;, = Ar?/(2Dp) is added to the running time and the displacements
along each dimension are sampled independently from a one-dimensional Gaussian proba-
bility distribution with the standard deviation Ar?. Alternatively, the magnitudes of walker
displacements can be kept equal to Ar, while the time increments can be sampled from the

first-passage distribution .J; for the sphere of radius Ary,. In the limit of small displacement
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length both methods should reproduce the required first-passage probability distributions in
the cut sphere.

As a practical matter, one must ensure that the path makes some progress, that is at
least one hop is taken. Therefore Ar, should be smaller than some fraction (e.g., half
or one third) of the inter-particle gap . Furthermore, to ensure reasonable accuracy the
displacement Arj, should be smaller than the relevant length-scales of the cut sphere Pp.
We set Arj, = ¢, min(d, R4 + Rp), where 4 is the initial inter-particle gap and ¢, < 1 is a
fractional hop length parameter. The walk terminates when a collision or pair dissolution
occurs, or when time exceeds a specified upper bound on %, t,.,. Occasionally, the first
displacement has to be truncated in order to ensure that the difference walker does not
leave Pp after only one hop: we simply re-sample the hop again if the initial displacement
is too large. In cases when the particles reflect on collisions, we simply reject the last hop
leading to collision. In cases when the particles react on collisions, we take the full length of
the last hop but truncate the last time increment. If instead of collision a pair dissolution
event occurs, we reject the last hop rather than trying to truncate it more accurately (and
expensively). In all cases, exit time ¢ = ¢ and location ¥p are recorded for possible future
use. If the time t exceeds t,,q., the last time increment is set to At’h =t — tyee and the
length of the last hop is scaled by factor \/m :

If and when the previously scheduled first-passage event actually occurs, we simply move
the difference walker to the pre-sampled exit location rp = rp. However, when the scheduled
first-passage event is preempted by some other event, e.g. intrusion of a third party particle,
a no-passage propagation is required instead. In such instances, rather than storing the
entire walk generated during pre-sampling, we opt to repeat the same trajectory starting
from the same seed for the pseudo-random number generator. For this purpose we store the
random seed for each protected pair when its next first-passage event is scheduled, and use

this seed should it become necessary to repeat the previously sampled walk.

IV. ALGORITHMIC DETAILS

In this section we give details of various components of the FPKMC algorithm other than
the propagators. First, we briefly discuss computational techniques for searching for near

neighbors. We then explain the types of events that are scheduled and processed by the
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FPKMC algorithm. This section contains several detailed pseudocodes, including the main

event loop and the construction of protective regions.

A. Near-Neighbor Search

Efficient particle-based algorithms use various geometric techniques to reduce to O(1) the
cost of searching for the neighbors of a given particle. Reference [20] provides extensive de-
tails and illustrations of these techniques for hard spheres and ellipsoids; here we summarize

only the essential components.

1. Linked List Cell (LLC) Method

The most basic technique is the so-called linked list cell (LLC) method. The simulation
domain, typically an orthogonal box, is partitioned into N, cells, typically cubes. Each
particle i stores the cell ¢; to which its centroid belongs, and each cell ¢ stores a list £, of all
the particles it contains. Given a particle and a search range, the lists of potential neighbors
is determined by scanning through the neighboring cells. Typically, for maximal efficiency
the cell should be larger than the largest search range, that is, larger than the largest
protective region P;. If some particle grows too large, e.g. due to coalescence reactions,
one can enlarge the cells and re-build the associated linked lists. In Section IV G we discuss
the impact of cell size on efficiency as well as methods for choosing the optimal cell size in
simulations of radiation damage.

In our FPKMC implementation, in addition to the list of particles L., each cell ¢ stores a
bitmask M. consisting of Nyitg > Ns bits (N is the number of species). Bit 7 in the bitmask
M. is set if cell ¢ contains a particle of species . The bit is set whenever a particle of species
~v is added to the cell, and all bitmasks are cleared periodically. When performing a neighbor
search for particle 7, cells not containing particles of species that interact with species s; are
easily found and are simply skipped. This can significantly speed up the neighbor searches
in cases where not all particles interact with all other particles, for example in simulations
of two species diffusion-limited annihilation A+ B — 0 where particles of like species do not

interact.
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2. Near-Neighbor List (NNL) Method

Another neighbor search technique is the near-neighbor list (NNL) method [20]. The
essential idea is to enclose every protective region P; inside a bounding neighborhood N,
P; C N;. This bounding neighborhood is fixed while the particle and its protection change
as the particle moves around, until the particle comes close to the boundary of N; at which
point a new N is constructed. In principle, one can treat the boundary of N; as a first-
passage surface, however we simply rebuild the bounding neighborhood whenever the particle
comes close to its boundary.

The linked list NNL(7) lists all other neighborhoods that intersect neighborhood A;(hard
walls or other boundaries may also be near neighbors). This is used to identify potential
interactions of particle ¢ and can be reused until the particle core C; approaches the bound-
ary of N;. This results in significant savings of computational effort if particle motion is
localized and the particles experience numerous displacements before leaving their bounding
neighborhood. Note that the LLC method is still used to build A; and NNL(7) which keeps
the maximal cost of pairwise searches at O(N) instead of O(N?). In our implementation N;
is build as a sphere concentric with the particle and with the diameter larger than 2uR; but
smaller than the cell size, where ¢ > 1 is a parameter.

Even the NNL method can become inefficient when some particles are much larger than
others, e.g. large clusters formed by coalescence of defects in radiation damage modeling.
In such cases, if the cells are still maintained larger than the size of the largest particle, the
same cells may contain many small particles making the search for near neighbors expensive.
On the other hand, if the cells are kept reasonably small, neighbor searches need to examine
many small cells in order to account for all near neighbors of the large particles. The idea
of bounding sphere complexes (BSCs) [20] method is to use small cells but cover N; with
a collection of Npgc spheres not larger than the cells. The so-constructed sphere complex
remains immobile until A changes, which would occur infrequently if the large particles
move slowly or are immobile. The small spheres forming BSCs are inserted in the LLCs and
near neighbors of each large particle are found by searching for the near neighbors of each

constituent small sphere in the corresponding BCS.

22



B. Types of Events

The following types of events, as identified by the event partner p and event type v (which
we arbitrarily represent with an integer here), are scheduled and processed in the FPKMC

algorithm for a given particle ¢ of species a:

Particle protection identified by p = 0, v = 1. Such events are scheduled at the be-
ginning for all particles and immediate updates are scheduled for any particles whose
protections are destroyed before the scheduled first-passage time. Processing consists

of protecting the particle with a new protective region P; (see Section IV E).

Particle update identified by p = 0, v = 0. A protected particle needs a new event

prediction.

Particle insertion identified by p = 0, v = —1. Processing requires first checking whether
the newly inserted particle overlaps with any existing particles. If it does, correspond-
ing reactions are processed, otherwise, the particle is protected (see Section IV D be-

low).

First-passage hop identified by p = 4, v < 0. Scheduling consists of sampling an exit time
t and exit location T from .J;. Processing consists of moving the particle, ¢; « t; +t,
r; < r; + 1, destroying the old protection, and then protecting the particle again.
Additional information, such as the surface of P; with which the particle collides, can

be recorded in v.

Particle decay identified by p = ¢, v > 0. The particle decays via the reaction D¢ before
leaving its protection. Scheduling consists of sampling an exponentially-distributed
number with mean (37 T#)~" and then choosing one of the reactions v with probability
I/ > % (here the sum is over all single particle decay reactions available for particle
i). Processing consists of sampling from ¢;(r;t) and moving the particle, ¢; « t,
r; < r; + r, destroying the protection P;, and then executing the selected decay

reaction D¢.

Hard-wall update identified by p = —w, v = 0, where w is the identifier of the hard wall.

A particle-wall pair needs a new event prediction after it has been protected.
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Hard-wall escape identified by p = —w, v < —1. This event is similar to a first-passage
hop, however, Jyy is sampled instead of .J;. Additional information such as the surface

of P; with which the particle collides could be recorded in v.

Hard-wall collision identified by p = —w, v = —1. This event is similar to the hard-wall
escape, however, the outcome is a collision of the particle with the hard wall resulting

in annihilation of the particle (a reflection is never explicitly scheduled).

Hard-wall decay identified by p = —w, v > 0. The particle decays via the reaction D¢

before colliding with its protection or the hard wall.

Pair update identified by p = j, ¥ = 0. A pair needs a new event prediction after it has

been protected.

Pair disassociation identified by p = j, v < —1, where j is the partner particle. Schedul-
ing consists of sampling from J,(Z, T;, T;). Processing consists of moving both particles
tj —t;+1t,r; —r; +71;, and tj—t; + t, r; < r; +r;, destroying both protections P;
and P;, scheduling an immediate protection event for particle j, and then protecting
particle ¢ again. The specific meaning of the disassociation event could be recorded in

v, e.g. that particle j left its protection or that the center walker left its protection.

Pair collision identified by p = j, v = —1. Scheduling consists of sampling from
Jo(t, T;,T;). Processing consists of executing reaction R,3, where (3 is the species

of partner particle j.

Pair decay identified by p = j, v > 0. Particle ¢ decays before the pair disassociates or
collides. Processing consists of sampling co(r;, r;;¢) and moving both particles accord-
ingly, destroying both protections, scheduling an immediate protection for particle 7,

and then processing the decay reaction D¢ for particle 7.

C. Main Event Loop

The core of the FPKMC algorithm is the event loop described in Algorithm 2. We
have already discussed most of its steps and give here additional details to facilitate other

implementations of the FPKMC algorithm:
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e Immobile particles may have multiple partners, which are not stored explicitly. Search-
ing for partners of an immobile particle ¢ consists of performing a neighbor search for

any protective regions P; that might overlap with C; and checking if p; = 7.

e For pairs ij, only one of the particles is inserted into the heap, specifically, min(i, j) if
both are mobile or just the mobile particle otherwise. In our implementation deletions
from the event queue heap are lazy, meaning that particles that should be deleted from
the heap [for example, max(i, j) for a pair of mobile particles| are still in the heap but

with infinite timestamp.

e Un-protecting a particle ¢ consists of bringing it and, potentially, its partner to the cur-
rent time using propagators c;, ¢ or cgw depending on partner type p;, and scheduling

immediate protection events for ¢ and its partner.

e Whenever the position of a particle is updated, its time is updated as well, ¢; « t, and

also the LLCs and NNLs are updated accordingly.

Algorithm 2: FPKMC event loop. Here £ denotes a uniform random variate 0 < £ < 1.
Initially the time of the next particle insertion ¢z = —1, and all particles are put in the

event queue with t, =0, p=0, v =1.

1. Find (query) the top of the event heap to find the next particle i to have an event with p at

te.

2. If tg < 0, set tg = —In¢/I'g, where I'g = Zivil B, is the total insertion rate of all particle

types.

3. If tg < te, set t « tp, tg < —1, insert a new particle into the system (Algorithm 3) and

cycle back to step 1.

4. Remove particle ¢ from the event queue, store the time increment At = t{ — ¢;, the event
partner p = p;, event type v = v;, and particle species a = s;. Advance the simulation time

t— 5.

5. Insertion: If p =0, v = —1, check if the newly inserted particle overlaps with any existing
particle and if so, process corresponding reactions. If the particle still exists after the check,

set its event to be a regular protection, p <+ 0, v «+ 1. Otherwise, cycle back to step 1.
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6. Single-particle event: If p =i and v # 0, update particle i:

(a)

(b)

First passage hop: If v < 0, propagate i to its first-passage location, r; < r; + T, and
destroy its protection P;. For spherical particles, one can sample r at this point instead

of pre-computing it when scheduling first-passage hops (see Section IIT A).

Decay: Else if v > 0, sample r from c¢(r; At), set r; < r; + r, destroy P;, process the

decay reaction DY and cycle back to step 1.

7. Hard-wall event: Else if p = —w < 0 and v # 0, update the particle-wall pair p — w:

(a)

(b)

8. Pair

First-passage event: If v < 0, propagate particle i to its first-passage time, update r;

and v; if needed. Collision: If v = v; = —1, delete particle ¢ and cycle back to step 1.

Decay: Else if v > 0, sample r from cpw(r; At), set r; < r; + r, destroy P;, process

the decay reaction D¢ and cycle back to step 1.

event: Else if p > 0 and p # 7 and v # 0, update the particle pair ij, j = p, 8 = s;.

Test whether the partner is a mobile particle, i.e., whether p; = 1.

(a)

(b)

Disassociation: If v < 0, propagate the pair to its first passage time (see Section II1IB),

update r; and, if needed, r; and v;. Destroy protections P; and P;.

Collision: If v = v; = —1, process the particle-particle collision. If j is immobile,
find and un-protect all of its other partners k (see Section IVF). Process reaction
Rap, scheduling immediate particle insertion events for any remaining or newly created

particles, and cycle back to step 1.

Disassociation: Else if v < 0, schedule an immediate protection for the partner, p; < 0,

v; < 1, and insert j into the event queue.

Decay: FElse if v > 0, sample ca(ra,rp; At), set r; «— r; + r4 and destroy P;. If j is
mobile, set r; < r; +rp, destroy P;, schedule an immediate protection for the partner,
pj < 0, vj « 1, and insert j into the event queue. Process the decay reaction D;’ and

cycle back to step 1.

9. If particle ¢ is mobile, build a new protection P; and find the limiting neighbor & (Algorithm

4):
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(a) If v # 0 and k = N, then rebuild N; and NNL(3).

(b) Else if v # 0 and k is a protected particle, then try to enlarge P; by making more room

for it:

i. Destroy P; and un-protect k.
ii. Build a new protection P; and find the new limiting neighbor &'.

iii. If k' is a protected particle, un-protect k again, set k «+— k' and cycle back to step

9(b)i.

10. Let p = p; (this may have changed during the previous step). If p = i or p = 0 then schedule

a new single-particle event for i:

(a) If N¢ > 0 then sample the time of next decay t; = —Inr/T', where I' = Zk re,
and find reaction v for which ZZ: re <’y < Z::1 & using linear or binary search.

Otherwise let t4 = oo.

(b) If i is protected, sample an exit time ¢ and (optionally) an exit location ¥ from .J; using

tq as an upper bound. Otherwise set t = oco.

(c) Choose the smaller of t; and t and insert i in the event queue with the appropriate

event prediction.

11. Else if p > 0 and p # ¢, schedule a new pair event for ij, j = p, 8 = s;. If j is mobile, i.e., if

pj = i, then set k = min(4, j), otherwise set k = i.

(a) Sample a new decay time for particle 4, tf and sample t;l if j is mobile. Set t7 to the
time of the first decay reaction, set v to the selected decay reaction and set kg = i or

kq = j to indicate the decaying particle.

(b) Sample an exit time and location for the pair from Jo(¢,F;,T;) using ¢ as an upper
bound. If £ < t¢, change t¢ « t and change v, appropriately. If needed, store the exit
k k

location.

(c) If vy > 0, insert k4 into the event queue with the appropriate decay event prediction.

If kq # k, delete k from the event queue.
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12. Else if p = —w < 0 then schedule a new event for the particle-wall pair similarly to the case

of an immobile partner in step 11.

13. Cycle back to step 1.

D. Particle Insertion

Pseudocode 3 is an algorithm for inserting a new particle in the simulation volume. Its
inverse operation of particle deletion is not given here for brevity. Note that in some applica-
tions it can be necessary to insert a whole collection of particles rather than a single particle.
For example, irradiation by heavy particles - ions or neutrons - creates large displacement
cascades that quickly anneal into a whole collection of point defects and clusters. The steps
for inserting particles groups are similar to those for inserting a single particle and are not

described here.

Algorithm 3: Inserting a newly-born particle.

1. Choose which particle species « is to be inserted with probability B, /I'g, using linear or

binary (tree) search.

2. Find an unused particle ¢ compatible with species « or allocate storage for a new particle if

none is found.

3. Sample position r; from a problem-dependent probability density function, for example,
uniformly inside the simulation box. Insert the particle into the corresponding cell list L.

If using NNLs, build a new neighborhood Nj;.
4. Set any additional attributes, such as particle size R;, according to the inserted species a.
5. Mark the particle as unprotected, P; = C;, and set t; < t.

6. Schedule an immediate insertion event t, <« t, p = 0, v = —1 and insert ¢ into the event

queue.
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E. Particle Protection

For better performance, one can try to use the freedom afforded by the FPKMC algo-
rithm to select particle protection so as to delay as far as possible the very next event in the
queue. However, finding an optimal space partitioning is a difficult problem of non-linear op-
timization, especially since events other than the first-passage and no-passage propagations
are taking place concurrently during the simulation. Here we present a practical algorithm
that works well enough.

Our algorithm for protecting a given particle ¢ finds the nearest pair of unprotected par-
ticles whose protection affects the protection of 7. It is recursive and rather complex in its
details, as described in detail in Algorithm 4. Here we try to give a more intuitive and
brief verbal explanation, which can be used to design alternative implementations. The al-
gorithm starts from the particle ¢ and finds the maximal possible size of its protective region
by examining all of the neighboring objects limiting the protection and finding the “near-
est” (most-limiting) neighbor and also the “next-nearest” (next-limiting) neighbor. These
neighbors could be other protected and unprotected particles, nearby hard walls, the cells
used to build the LLCs, or the bounding neighborhood N;. For each of these cases one can
calculate the maximal allowed size of the protection P; afforded by the neighboring object.
Specifically, if the neighboring object is itself an unprotected particle it is assumed that the
particles would be protected with touching protections whose sizes are proportional to the
square roots of the diffusion coefficients. If the limiting neighbor is an unprotected particle,
the algorithm recurses by repeating the process with that particle replacing particle ¢. The
recursion continues until a neighbor is found whose own limiting neighbor is the particle 4,
that is, a pair of mutual nearest neighbors ¢ and j is found. If ¢ and j are sufficiently close
and the next-nearest neighbors of i and j allow for pair protection (see Section IIIB), the
particles 7 and j are protected as a pair. Otherwise, they are protected with touching single-
particle protections. The recursion trail is then reversed and all the particles visited during
the recursion are protected with the maximal allowed protection, accounting for the recent
protection of their nearest neighbor and the previously-identified next-nearest neighbor. At
the end of the process, the particle ¢ and possibly a number of other particles are protected

and the neighbor limiting the size of P; has been identified.

Algorithm 4: Protect the unprotected particle ¢« with the largest possible P; and report
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the neighbor ;.. that is limiting further growth. The radius of the protective region
should not exceed an upper bound R,,., on the largest possible size of any protection in
the system. Note that the same algorithm applies to either spheres or cubes if distances

are measured in the appropriate metric.

1. Set lyouen < 0. If particle 4 is immobile, return without protecting it.

2. Push the current particle under consideration ¢, its limiting neighbor I = 0, and the maximum

l

max = OO on the recursion stack.

allowed protection size due to that neighbor R

3. Read i, lyg and R from the top of the stack. Add room on the stack to store the nearest

maxr

P

i for the second-nearest neighbor

and, similarly, land R?

max

neighbor [ and the associated R

and marker [ IP indicating if [ was protected when it was first encountered.

4. Select the neighbor search range Rgeqren > Ri + Rmaz such that all particles closer than
R; + Ryae are inspected as potentially limiting. Set R~ « min(Rsearen/2, Rsearch —
Rynaz) > R; to guarantee that P; is not too large, R(P) < RP i.e., it does not overlap with

7 max’

any protections not inspected during the neighbor search.

5. Set [ «— 0and RP._« RP . If RO > RP

. P
o T O rax S€t 1« 0, otherwise, set | « l,4, R —

max

Rl

mazx-*

6. Iterate over all the particles or hard walls j closer than Rgeqrcn (if NNLs are used, include

j = N; in the search to ensure that P; C N;):

(a) If 4 and j are of non-interacting species or if j = [, skip this neighbor.
(b) Calculate the distance R;; between ¢ and j.

(c) If j is protected, set Rp = R;; — R;p), otherwise set Rp < R;;j so that R;; is partitioned

among the two particles according to their diffusion coefficients (see Section IIIB).

(d) If Rp < RE . or Rp < R”,.. update I, RP [ and R

max max? max? max aCCOI‘dlngly.

7. Continue to the next or end the current level of the recursion (i.e., pop the top of the
execution stack and if the stack depth is positive resume from the previous step 7e). If [ is

a particle then set [ lP « T if it is protected, and [ ZP «— F otherwise:
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(a) If I = N; then set R;m — RP If Rgp) < (1 + Omin)Ri set lioyen < N; and return

max-*

from the recursion.

(b) Else if | = —w < 0 is a hard-wall then partner the particle with the wall if possible (we

omit the details for brevity) and return from the recursion.

¢) Ifl = 1,4 > 0 then i and [ are nearest neighbors. Store R7 =RP _andl; =1 and
J

j,max mazx

return from the recursion.

(d) Else if I = j > 0 is an immobile particle, set I; = 0, R .. = R; and return from the

recursion.

P

max

(e) Elseif Il = j > 0 is an unprotected particle, push i < 5, [ < i and Rl R;j—R

max
on the stack, and continue the recursion by going back to step 3.

P - RP

,max max

8. If j =1 > 0 is an unprotected particle, set R and I; = [, and test whether

nearest neighbors 7 and j can be protected as a pair:

(a) ¥ RE .. < (146pair)R; and R7,

1,TaT J,max

< (140pqir) Rj, determine the smallest appropriate

protection sizes RT’ . and R? . that allow a meaningful pair protection (see Section

1,MAN 7,man
IIIB). If Rfmm > Rfmm and Rfmax > Rfmm, protect ij as a pair:
i. Choose R appropriately, RY . < R™ < RP and similarly for j if it is
: ] ) ,min — 7 — 1, max’
mobile. Update R4, to be larger than both RZ(P) and R](P).
ii. Set p; «+— j and set p; < 4 if j is mobile.
iii. Let ¥ = min(4,j) and k¥’ = max(i,7) if j is mobile, otherwise let k =i and k' = j.

Set vy, « 0, tf < 0 and delete &’ from the event queue.

iv. Return from the recursion.

(b) Set RZ(P) — RP . update Ry = max(Romaz, Rgp)), and similarly for j if it is mobile.

max?

If R?

max

< (14 Omin)Ri then set lipyen to be the limiting (closer) neighbor of [; and [,

and return from the recursion.
9. Else if j =1 > 0 is a protected particle:

(a) If IP = T then set R”) « RP_ . If RP

[ max* mazx

< (1 4 dpmin)Ri, report this neighbor as

limiting, louen < 1.
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(b) Otherwise re-calculate R;; from R}, .. and set RP max(R? ., Rij — Rgp)) > RFP

maxr 1 max’ * max

to ensure the largest possible protection.

F. Other Steps in the Algorithm

There are several other common steps in the FPKMC algorithm that are implemented as
separate subroutines in our Fortran 95 code for which we do not give detailed pseudocodes

but list them below with brief notes.

e Processing a collision between two particles. This step is very application-specific
because of the different types of reactions that may occur. Typically the processing

involves deleting some particles and then possibly inserting others.

e Processing a decay reaction. This is also application-specific and consists of deleting

the decaying particle and then inserting the reaction products at desired positions.

e Un-protecting particle 1. The partner is identified and the appropriate probability
distribution is used to sample a new position for the particle and also its partner if
the partner is mobile. The LLCs are updated accordingly, P; and possibly P; are
destroyed, and immediate protection events scheduled for particle 7 and its partner j

if it is mobile.

o Un-protecting all partners of an immobile particle. This is necessary when the state of
an immobile particle changes (e.g., it decays). First, a neighbor search identifies the
partners of the immobile particle, they are unprotected and immediately scheduled
for re-protection. Note that the neighbor search here relies on the LLCs and it is not

necessarily safe to modify LLCs until the search completes.

o Scheduling and processing of pair events. Since implementation depends on the particle
shapes and the types of reactions considered, we do not give detailed pseudocodes for

this step. Section III discusses pair propagators for hard spheres.

e Resetting the time counter to t = 0. This step is useful for minimizing round-off
errors, especially before an event generating other events with very small timestamps

occurs. For example, insertions of cascades of defects creates dense lumps of particles
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that evolve at time scales At comparable to numerical precision (1071) relative to
the time scales of the majority of events, and thus ¢ + At ~ ¢ due to round-off. This
can be avoided by setting ¢ = 0 after subtracting the current ¢ from all time counters,

including the particle times ¢; and the event predictions ¢{.

e Synchronizing all particles. It is occasionally useful to bring the whole system to the
current point in time for analysis, saving the configuration to a file, etc. This requires
un-protecting all particles. This is a good occasion to reset current time ¢t «— 0 to

avoid the round-off problems.

G. Optimizing Runtime Parameters for Efficiency

The most important parameter defining the performance of the FPKMC algorithm is the
size of the cells used for neighbor searches. The common wisdom for a homogeneous system
of identical particles is that, optimally, there should be about one particle per cell which
balances the cost of neighbor searches with the cost of updating the LLCs and moving
particles between the cells. However, this prescription does not necessarily apply to the
often heterogeneous (in both time and space) systems encountered, for example, in radiation
damage simulations. Some clusters of defects can grow to sizes more than a decade larger
than monomer defects. Additionally, the system’s evolution can entail disparate timescales
differing by many orders of magnitude, from fast relaxation on the scale of picoseconds
during initial cascade insertion to slow annealing on the scale of years.

For simplicity, the following discussion focuses on LLCs, without NNLs. Furthermore,
we assume that among several particle species present in the system there is a single highly
mobile species a,,, such as interstitials in radiation damage modeling. In such cases, the bulk
of computational effort is spent on protecting and propagating particles of the fast species.
Generally, it is a good idea to assign as large protection as possible for the fast particle(s)
without, however, having to search for too many neighbors while building a protective region.

In our algorithm the protection size is limited by the smaller of the following:

1. The range for the neighbor search Ry = min(nsL./2,nsL. — Ryaz), Where ng, =
[(Rpmaz + Rp)/Lc| is the number of neighboring cells to be searched in each direc-

tion, L. is the linear dimension of the (cubic) cells, R, is the radius of particle species
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Qp, and Ry, > R, is the current maximum size of protection in the entire system

(typically an immobile cluster).

2. The distance R, to nearby neighbors against which pair protection is not possible (due
to third particles blocking it or the neighbor being too far away to make pair protection

advantageous). This is a measure of the void size around the fastest particles.

The optimal performance is achieved when the two bounds are approximately equal,
R, ~ R,, i.e., the number of searched neighbors is just enough to find the largest possi-
ble protection, no more, no less. The void size R, can be measured for a given configuration
by gradually enlarging the cells until the average size of protective domains stops increasing,
becoming close to R,. Numerical tests have confirmed that indeed the choice of L, such that
ns = 1 and Ry =~ R, is optimal.

In an actual simulation it is too expensive to estimate R, at every step but it is still
possible to use an adaptive method for selecting a cell size. Specifically, we monitor how
many protections for particles of species «,, have been limited by cell size (i.e., by Rs) and
how many have been limited by nearby particles (i.e., R,). We observe that it is best to
keep the former a small but nonzero fraction of the latter. If the runtime statistics show
that too many protections are blocked by the cell size, the cells are enlarged by reducing
the number of cells by one along each dimension of the simulation volume. Conversely, the
cell count is increased by one if the statistics show that too few protections are blocked
by the cells. The cell size strongly affects the performance of the code. If too small, the
protections will be small too leading to shorter scheduled propagation times and, thus, slower
time evolution. If the cells grow too large, there will be many neighbors to examine during
each protection, slowing down the calculations. The use of NNLs and, in particular, BSCs
(see Section IV A 2), becomes advantageous when very large clusters are present, so that
ns =1, i.e., L. > Ry + R, and the cells contain many smaller particles at sufficiently high
monomer densities. In the simulations of irradiated materials reported in section V B, we
focus on low particle densities and find that the use of NNLs is not necessary to achieve an
optimal performance.

Note that computational cost is not always dominated by a single ultra-fast species.
As an example, consider the case of modeling radiation damage inflicted in the form of

defect pairs consisting of a very mobile interstitial and a much less mobile vacancy. At
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first, the interstitial propagation events will dominate the event loop and the interstitials
will quickly diffuse to absorbing sinks, such as hard-wall boundaries or nearby vacancies,
and disappear. This will leave behind the slower vacancies that will continue their random
motion until the next defect pair is inserted. If the insertion rate is low, the vacancies
can move significantly between successive insertions and after the fast interstitials all died
out. During such intervals the computational cost is dominated by vacancy propagations
and protections. In such conditions, the focus of particle protection will have to shift from
interstitials to vacancies and back to interstitials. In general, the choice of optimal cells and
protection sizes is complex and problem-dependent. Our implementation of the FPKMC
algorithm collects various statistics that can be used to make runtime adjustments and

improve the simulation performance.

H. Mixing Time-Driven with Event-Driven propagations

Under certain conditions the exact event-driven handling of particle diffusion may become
inefficient and/or cumbersome. For example, in a dense group of closely spaced particles,
protection of single particles and pairs is severely limited by the third particles in close
proximity. In such conditions, particle displacements can become too small to deserve asyn-
chronous event-driven handling. Time-stepping avoids the cost of event queue operations
and simplifies overlap detection. Therefore, it can be more efficient to use time-stepping for
dense groups of particles, similar to the time-driven hopping algorithm presented in Section
IITB 2 that avoids the use of complex pair propagators for spheres. Use of small hops is
also advantageous when particles or surfaces (e.g., grain boundaries) have complex shapes
making analytical treatment of particle diffusion and collisions difficult or impossible. Yet
another example when simple time stepping is useful is tightly-bound collections of particles
(clusters) that may act as a single particle and have complex internal structure and dynamics
(relaxation). Adding a time-driven component to the asynchronous event-driven FPKMC
algorithm allows to retain the overall algorithm efficiency even in such difficult conditions.

The particles which cannot be protected by a sufficiently large protection are marked as
time-driven particles and are not inserted into the event queue. A special type of event,
a time step event, is introduced and always scheduled to occur at equal time intervals At.

When a time-step event is processed, all time-driven particles are moved simultaneously,
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followed by overlap checks and reactions, if any detected. Particles that are time-driven are
not protected against each other, instead, they can stay unprotected or are protected only
against the event-driven particles. Time-driven particles whose protections overlap form a
cluster and are propagated synchronously with the same time step At tailored to the fastest
particle in the cluster. For simplicity, all time-driven particles may be treated as one cluster
with a single global At. However, it is often the case that different species have widely
differing diffusion coefficients and therefore very different time-steps will be appropriate for
different species. To solve this problem, one can use the n-fold (BKL) [15] synchronous
event-driven algorithm inside each cluster and replace the time step events with BKL hop
events. At each hop event all particles of a single species move by a small but non-negligible
distance while all other particles remain in place. This way, the more mobile particles move
more frequently (with correct relative frequencies) than the less mobile ones.

Note that the particles in such a time-driven cluster can take hops up to the time of
the next event in the queue, since it is known that the hops can not be preempted by
another event. In some situations this may improve efficiency by reducing the number of
heap operations and also increasing the locality of the code by focusing multiple events on
the same (cached) small group of particles. We are currently developing an implementation
of a mixed event-driven (first-passage) with time-driven (n-fold KMC) algorithm and will

report additional details and results in a future publication.

V. VALIDATION AND RESULTS

In this section we apply the FPKMC algorithm to several diffusion-reaction problems
of increasing complexity. To validate the new algorithm and to demonstrate its efficiency,
we compare our simulations to results obtained using two different object KMC (OKMC)
codes developed earlier for simulations of continuum diffusion (BIGMAC code [1]) and for
simulations of random walks on a lattice (LAKIMOCA code [6]). Presented in Section V A,
the first two test problems are relatively simple validation studies for the case of two-species
annihilation, A + B — 0, when the two species have different diffusion coefficients. FP-
KMC simulations for this model are compared against results obtained with the BIGMAC
code. In Section VB 1, we apply FPKMC to a more challenging test problem of damage

accumulation in a metal thin film subjected to electron irradiation. We base our FPKMC
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simulations on a well known model of a-iron studied earlier using three different methods,
including cluster dynamics, lattice OKMC, and the approximate continuum OKMC algo-
rithm JERK Ref. ([5]). Here we compare our results for this model against simulations
performed using the LAKIMOCA lattice-based code. Finally, in Section VB3 we apply
FPKMC to simulations of radiation damage accumulation over previously inaccessible time
scales, namely, to time intervals and radiation doses characteristic of material lifetime in a
nuclear reactor. To our knowledge, this is the first time an atomistic model has reached
technologically relevant radiation doses exceeding the previous simulation benchmarks by

several orders of magnitude.

A. Two-Species Annihilation

As a validation study, let us first consider a system of spherical particles of two species A
or B in three dimensions. The particles of different species have different radii R4, and Rpg
and different diffusion coefficients D4 and Dpg, D < Dy4. Particles of like species do not
see each other but particles of unlike species annihilate upon hard-sphere contact, i.e. at
the annihilation distance r4,p .0 = R4 + Rp. As a base for comparison, we first simulated
the same model reaction using the BIGMAC code for several values of the hop distance A,
characterized hereafter by the dimensionless ratio d = A/(R4+ Rp). For the hopping-based
pair propagators in FPKMC we set = 0.1, which was found to be sufficiently small to give
accurate results, yet large enough to make the pair propagators almost as efficient as the
analytical pair propagators for cube-shaped particles.

The simulations were performed in a cubic simulation domain of volume L? with periodic
boundary conditions. In simulations reported here, half of the particles are of species A and
the other half are of species B. We consider two different initial conditions. In the first case
As and Bs are randomly and uniformly distributed in the simulation volume (the overlapping
particles of unlike species are removed). The reaction kinetics is described by the reduction
of the number of A (or B) particles with time, Na(t) = Npg(t). Figure 2 shows this decay
kinetics for FPKMC simulations as well as for BIGMAC runs with different hop sizes 9.
The results indicate that hop sizes as large as § = 1/4 can be used in BIGMAC without a
noticeable error and that BIGMAC and FPKMC produce virtually indistinguishable results.

In the second test case, one half of the box (z > L/2) is randomly filled with A’s and
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the other half (zr < L/2) with B’s. The resulting N4(t) = Np(t) is shown in Fig. 2, with
similar qualitative behavior as in the first case of intermixed As and Bs. The concentration
profiles c4(z;t) and cp(x;t) are shown for several different points in time in Fig. 2 for both
FPKMC and BIGMAC with hop size 6 = 1/4 revealing an excellent agreement between
the two algorithms. The efficiency of BIGMAC simulations is proportional to the square
of the hop size, but even for the rather large hop sizes used in our BIGMAC simulations,
the latter take several hours to annihilate most of the initial 1.28 - 10° particles, whereas
the FPKMC code accomplishes the same in about 10 minutes on a typical single-processor

desktop machine essentially independently of the value of §.

B. Radiation Damage

Modeling of radiation damage in reactor materials is not only another test problem for
our algorithm but also a technologically important application, notably in the design and
maintenance of nuclear power plants. When a metal is irradiated, incoming high energy
particles (neutrons, ions, electrons) collide with atoms of the host crystal lattice inducing
displacement cascades and producing numerous defects, such as excess vacancies and inter-
stitials. Many of these defects quickly annihilate with each other, but some diffuse away
from the initial impact locations eventually finding other defects to react with and to form
defect clusters. The cluster density and sizes can grow over time resulting in substantial
(most often detrimental) modifications of material microstructure and properties. Atomistic
KMC method is well suited for simulations of radiation damage accumulation by tracing the
numerous diffusive hops and reactions among crystal defects induced by collision cascades.
Unfortunately, the same detailed nature of KMC simulations makes them computationally
demanding and limits their time horizon to times far shorter than the technologically relevant
time scales (years).

The FPKMC algorithm seems to be perfect for simulations of materials under irradiation
and, in fact, it was this particular application that served as an initial inspiration for the
new method development. The advantage of FPKMC over other KMC methods is that the
new algorithm handles equally efficiently both the fast stages of cascade annealing when the
density of diffusing defects is high and the slow evolution of the small number of surviving

defects that continue their diffusive motion during the intervals between subsequent collision
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Figure 2: Comparison between BIGMAC and FPKMC for the two-species annihilation (A+B — 0)
test problem in three dimensions, starting from a uniformly-mixed (top left) and phase-separated
(top right and bottom) initial state. Two top panels and their insets show the number of particles
as a function on time, N4(t) = Np(t), on log-log and semi-log scales. The bottom panel shows
the particle concentration profiles c4(x;t) (solid curves for BIGMAC, circles for FPKMC) and
cp(z;t) (dashed curves for BIGMAC, squares for FPKMC) for the phase-separated initial condi-
tions. Concentration profiles taken at several times during the simulation are plotted in different

colors.

cascades. This intermittent (fast-slow-fast-...) character of system’s evolution is the major
computational challenge in radiation damage simulations that the asynchronous FPKMC
algorithm addresses.

To enable radiation damage simulations, several particle species are introduced:
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monomers, including highly-mobile interstitials (/) and less-mobile vacancies (V'), a number
of mobile cluster species, for example, dimers (I and V3) and trimers (I3 and V3), immobile
species representing clusters larger than any of the mobile species (1. and V.), and defect
(Frenkel) pairs (IV). Each particle is assigned a hard-sphere radius: for the clusters the
radius is related to the number of monomers ¢ > 1 contained in the clusters assuming that
the monomer volumes are additive, i.e. R, ~ Ry + (R; — Ry)c'/?.

Frenkel pairs (V') are inserted in the simulation volume at a specified birth rate and
instantly (i.e., with decay time 77y = 0) decay via IV — [ 4+ V. The resulting interstitial
and vacancy monomers are placed randomly within the simulation box, either at some initial
distance from each other or completely independently of each other. Electron irradiation
creates individual Frenkel pairs while irradiation by high-energy ions or neutrons creates
damage in the form of displacement cascades producing compact collections of monomers
and clusters, each cascade containing about 100 Frenkel pairs. The collision cascades are
randomly selected from a library of cascade configurations generated in Molecular Dynam-
ics simulations and the cascade locations and orientations are sampled from appropriate
distributions.

Upon collisions, particles of like species coalesce, for example, I+1 — Iy or V+V3 — V._y,
whereas collisions of particles of unlike species lead to complete or partial annihilation, for
example, Is +V.—4 — V5. In our current implementation, the distance at which two particles
collide must be equal to the sum of their radii since the FPKMC algorithm handles the
geometry of the protective regions assuming that an additive hard-sphere interactions among
the particles. For consistency, the same is assumed in simulations performed with the lattice-
based LAKIMOCA code that are used here for comparison. To imitate the stronger effect
of elastic strain on the interstitials (the bias), the interstitials are assigned radius 1.2 times
larger than that of the vacancies.

The defect clusters emit monomers at a given rate, represented as a decay reaction, for
example, V._5s — V.4 +V, or Iy — I + I. The emitted monomer is placed at a preset
emission distance J, from the cluster surface, in a random direction. This is at variance
with most other commonly adopted non-local emission rules, e.g. in the mean-field Cluster
Rate Theory method [21], in which the monomers are emitted from the clusters to “infinity”.
If and when a cluster shrinks by emission to a size at which it becomes mobile, the species

of the remaining cluster is changed accordingly, for example, V._y — V3 + V.
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The rates of defect diffusion and monomer emission from the clusters are calculated
according to the standard expressions for the rates of thermally activated rate processes in
solids. Defect migration and binding energies needed to compute the rates are calculated
atomistically, e.g. from first-principles theory, or estimated from experimental data. In the

simple model we consider here, only the monomers are mobile, with diffusion coefficient
D1 = D(]GiEm/kT,

where F,, is the activation energy for defect migration (lattice hop). The rate of emission

of monomers from a cluster composed of ¢ monomers is
Fc _ FODla_QC2/36_Eb(C)/kT,

where a is the lattice spacing, 'y is a constant that depends on the lattice type and Ej(c) is
the monomer binding energy in a cluster of size ¢, estimated using

C2/3 . (C . 1)2/3
223 -1

Ey(c) = Ep + [Ey(2) — Ef]

where E; is the monomer formation energy [5].

1. Thin film of metal under electron irradiation

As a test problem, here we consider a model previously studied in Ref. [5] using two
other KMC algorithms and the mean-field cluster dynamics [21]. The model system is a
0.287um-thick film of a-iron subjected to electron radiation. Periodic boundary conditions
are used in the x and y directions, while absorbing walls are used in the z direction. Further
details of the model are given in Ref. [5] and will not be repeated here. We made a few
minor changes to the model parameters presented in Ref. [5], notably switching from the
non-local to local emission of monomers from the clusters. Here we compare our FPKMC
simulations with new results obtained using the LAKIMOCA code [6].

In pure iron, the interstitials are much more mobile than the vacancies which results
in their rapid absorption at the free surfaces or annihilation with the vacancies. Due to
this very high monomer mobility, very few if any interstitial clusters form. However, the
ones that do nucleate, can grow rather large because the binding energy of interstitials in

the clusters is rather high. A large fraction of computational effort is therefore expended
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on propagating the interstitials. However, depending on the irradiation rate (fluence), the
vacancies may have time to move significantly between successive insertions of Frenkel pairs.
Here we present a high-fluence case studied computationally and experimentally in Ref. [5].
Further computational tests of the FPKMC code in a wide range of irradiation conditions
will be discussed in Section V B 2.

A comparison of the simulated time evolution for the number of defects, as well as their
spatial distribution at the end of 120 seconds of irradiation, is shown in Fig. 3. Generally, we
observe a good agreement between FPKMC and LAKIMOCA results although the number of
accumulated defects is slightly smaller in the FPKMC simulations than in the LAKIMOCA
runs. This is perhaps a consequence of different treatment of defect diffusion in the two
methods: in FPKMC the defects move by continuous diffusion whereas in LAKIMOCA
the defects walk on a lattice. However, at sufficiently low densities, lattice discreteness is
not as important and the effective reaction and emission rates are well matched between
the discrete and continuum models. Further comparisons between FPKMC and OKMC
simulations will be given in a future publication, here we simply observe the ability of the
FPKMC algorithm to correctly simulate radiation damage by comparing it to a standard
OKMC. Each FPKMC simulation sample used for obtaining the data plotted in Fig. 3 has
taken less than five minutes to complete on a modest workstation (3.4GHz Xeon 64-bit

processor). Efficiency of FPKMC simulations is further discussed in the next section.

2.  Performance

For a large number of particles N, computational complexity of the FPKMC algorithm
per event should be order O(N log N') which is the cost of event queue updates. For a typical
value of N = 10°, the logarithm is masked by other dominant costs that are all linear (e.g.,
neighbor searches and sampling from the propagators). Computational tests in the range of
N from 10* to 10° have indeed verified that the cost of FPKMC simulations scales linearly
with the number of particles.

The FPKMC code performance also depends on a number of other parameters, e.g. parti-
cle density, the disparity of diffusion and emission rates, differences in particles sizes between
the different species, etc. These and other factors and their interactions affect the overall

performance in complex ways that are yet to be fully examined. We defer to future appli-

42



O  Vacanciesin monomers (FPKMC)
O Vsindimers (FPKMC)
< Vsintrimers (FPKMC)
50007 U LU UL AR LR L RLE RURR | LR AR A Vsintetramers(FPKMC) ]
n -7 O  Interstitalsin clusters (FPKMC) n
o ] —— Vsinmonomers (OKMC) ]
- — - Vsindimers (OKMC) ]
o =« = Vsintrimers (OKMC) =
[7)] 4000 o =« =« = Vsintetramers (OKMC) .
Feb) = — — - Isinclusters (OKMC) 1
£ f :
S ¢ -
o) 3000 e E
E o ]
© C ]
O 2000 _—
o C g
E r ]
> o ]
P r ]
1000 |~ —
: 0 &
00 120
4 :l I I 5
j_| O  FPKMC mono-vacancies IE
Ly — — OKMC mono-vacancies I
35[ O FPKMC clustered vacancies
= =« OKMC clustered vacancies %
3f- < FPKMCinterstitials -
{\ i <+ -+ OKMCinterstitials R
‘9' D
— 25 T )
i |
o Il Q -l
= E \ > é{:]
T L d
& 15 sfﬁq I!-]?
1 . U
C E‘ . a1
05 Wi -
0 : M | ‘ | | | | ‘ | | | | ‘ | 1 . -%' :
0 500 ]:000 1500 2000
Atomic plane

Figure 3: Comparison between FPKMC (symbols) and LAKIMOCA [6] (lines) simulations of
a 0.287um-thick film of a-iron subjected to 120 seconds of electron radiation at temperature

(Top)

The time evolution of the total number of mono-vacancies, small vacancy clusters and interstitials

T = 200°C. The results shown on the plots are obtained by averaging over 50 runs.

(in clusters). The statistical error bars are comparable to the symbol sizes. The inset shows a
different scale to focus on the smaller clusters. (Bottom) The density profile along the thickness
of the film for all vacancies (in monomers and clusters), mono-vacancies, vacancies in clusters and
all interstitials (in monomers and clusters) at the end of 120 seconds of simulated irradiation. The
error bars are comparable to the symbol sizes, Z}écept for the interstitials for which the statistics is

poor.



Dose rate (dpa/s)|Total dose (dpa)|Simulated time|Speed (s/cpus)|Efficiency (dpa/cpuday)
1.5-1074 18 33 hrs 0.14 1.8
1.5-107° 2.9 54 hrs 1.3 1.7
1.5-1076 4.1 31 days 13 1.6
1.5-1077 1.6 125 days 150 2.0
1.5-1078 10 21 years 2.1-10° 2.7
1.5-107° 8.4 175 years 2.3-10% 3.0

Table I: Performance of the FPKMC algorithm in simulations of a 0.287um-thick film of a-iron
at T = 473°K subjected to different fluxes (dose rates) of electron radiation. Conditions typical
of nuclear reactors correspond to dose rates on the order of 10~8dpa/s and lifetimes from years to
several decades, while in the accelerated irradiation facilities the dose rates can be on the order of
10~*dpa/s and the tests can last for several hours or days. A displacement dose of K —dpa means
that, on average, each atom has been displaced from its equilibrium lattice position K times due
to incoming radiation. Note that simulation efficiency changes over the course of one simulation

so that the overall efficiencies reported in the last column are representative averages.

cations to study the subtle effects of various model parameters on the method performance.
Here we present a few figures on the performance of our FPKMC code for the same simple
model of metal thin film described in Section V B, as a function of irradiation flux measured
in the units of displacements per atom (dpa) per second (dpa/s). Kinetics of defect mi-
crostructure evolution and, in particular, the amount and character of accumulated damage
depend sensitively on flux and temperature. For example, the defect density (accumulated
damage) increases with the increasing flux and /or the decreasing temperature. It is therefore
not a priort obvious that FPKMC will be equally effective in dealing with a wide range of
fluxes and temperatures. A reasonable measure of the algorithm performance is the damage
dose simulated over a unit of CPU time expressed for example, in the unit of dose simulated
in one day of computing (dpa/cpuday).

The figures presented in Table I demonstrate that, with the use of optimization techniques
discussed in Section IV G, the algorithm performance remains nearly constant across several
decades of radiation flux. This highly desirable property derives from the ability of our

asynchronous event-driven algorithm to deal with very large differences in event rates and
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local densities. We observe that, in the course of a single simulation, the FPKMC algorithm
self-adjusts to the current conditions of spatial and temporal heterogeneity without much

intervention or parameter tuning.

3. Radiation Damage on Reactor Timescales

Future development of nuclear energy demands materials that can withstand harsh condi-
tions of particle irradiation, high temperature, mechanical stress and active chemical agents
over tens of years. The only fully reliable method to evaluate the potential of a candidate
material is to subject it to conditions relevant for the future reactor designs. However, such
an approach is not practical given that the relevant environment can be achieved only after
the reactor is already built. Furthermore, even if an appropriate material testing facility
were to exist, testing the candidate materials over the intervals of 50 or 100 years would not
be practical.

The idea of accelerated material testing is to subject candidate materials to conditions
even harsher than in the reactor but over shorter periods of times, e.g. a few hours or days,
in the hope that the observed (accelerated) material degradation can be used as a predictor
of the performance of the same material during its lifetime in a real reactor. The premise of
accelerated materials testing is that materials theory and numerical simulations can provide
a reliable connection between the accelerated tests and the material lifetime performance
predictions. To serve this purpose, material simulations should meet two conditions. First,
accurate material models need to be developed and validated against experimental mea-
surements. Second, the simulation algorithms need to be efficient to enable computational
predictions of materials performance under reactor conditions. The performance data pre-
sented in Table I suggests that FPKMC can meet this second challenge. Here we continue
to focus on the thin-film model studied in Section V B and use our FPKMC code to simulate
damage accumulation at two different dose rates, a high dose rate of 1.5-10~*dpa/s typical
of of accelerated experiments in material testing facilities such as JANNUS [22], and a low
dose rate of 1.5 - 1078dpa/s typical of the existing nuclear reactors. We ran both simula-
tions to a total dose of 10 dpa, which required several CPU days per sample on a common
workstation.

Direct comparison of two simulations performed at the same temperature 7' = 200°C
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revealed very different kinetics and end-of-dose damage, which is not surprising given that
much more time is available for damage annealing (healing) at the slow (reactor) time scales.
In order to enable scaling from high dose rates to low dose rates, it was proposed [23] to
raise the temperature in the high dose rate irradiation test so as to preserve the ratio of the
damage insertion rate to the rate of defect diffusion. Such scaling would be exact if there
were only one evolution mechanism whose rate can be adjusted by changing the temperature.
However, even in the simple model of a-iron considered here, there is a whole spectrum of
mechanisms and associated rates with different temperature activation parameters. One
can only hope that an approximate scaling can be achieved by adjusting the rate of just one
dominant mechanism that controls the overall rate of damage accumulation. In an extensive
series of numerical experiments we observed that, within the simple model considered here,
the overall rate and character of damage evolution appears to be controlled by the ratio of
vacancy diffusion to the irradiation dose rate. This is likely because, at all temperatures
of interest here, the interstitials are much more mobile than the vacancies and disappear
nearly instantly following the insertion of a Frenkel pair, leaving the less mobile vacancies
to diffuse and cluster in the absence of interstitials.

Figure 4 compares the state of damage reached at T' = 262°C' and high dose rate, with
that reached at T' = 130°C' at low dose rate. The kinetics of damage accumulation and
the resulting populations of voids are similar to each other but the scaling is only approx-
imate and some differences in the resulting microstructures are noticeable. Most visibly, a
few large interstitial clusters form at the high dose rate where the time interval between
successive Frenkel-pair insertions is comparable to the lifetime of inserted interstitials. On
the contrary, at the lower dose rate the newly inserted interstitials disappear (at the free
surfaces or through annihilation with the vacancies) well before the next Frenkel pair is
inserted. Additionally, as seen from the histograms shown in the insert, the average size
of the vacancy clusters is larger at the higher dose rate. The approximate agreement in
the overall swelling supports the idea that it may be possible to compensate the enhanced
rate of damage accumulation in accelerated tests by raising the test temperature so that the
resulting damage is approximately the same as in the reactor but at a lower temperature.
That the scaling is only approximate is less than surprising considering that multiple rate
processes, each with its own temperature dependence, act together to produce the resulting

damage kinetics.
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Figure 4: State of damage in a thin a—Fe film irradiated by electrons to the total dose of 10 dpa:
(Top right) At the high dose rate of 1.5-10~*dpa/s and T = 262°C and (Bottom right) At the low
dose rate of 1.5 - 10~%dpa/s and T' = 130°C.

(Left) Volume fraction of vacancies (swelling) as a function of damage dose. The vacancy fraction
was obtained by counting together all vacancies in the simulation volume, both in the vacancy
monomers or vacancy clusters, and dividing the sum by the total number of atomic sites. The
black solid curve is the swelling kinetics under the high dose rate/high temperature and the dashed
red curve is the same kinetics under the low dose rate/low temperature irradiation conditions.
Both curves were obtained by averaging over 10 independent simulation runs for each irradiation
condition, and the vertical bars show the estimated statistical errors. The inset in the bottom
figure shows a histogram of the distribution of vacancy cluster sizes at a dose of 5 dpa for both
the high dose rate/high temperature irradiation (shaded gray bars) and for the low dose rate/low

temperature irradiation (red bars).
VI. CONCLUSIONS

In this series of two papers we have described two algorithmic implementations of an asyn-
chronous event-driven algorithm for diffusion kinetic Monte Carlo simulations of diffusion-
reaction particle systems, first proposed in Ref. [2]. The First Passage Kinetic Monte Carlo

(FPKMC) algorithm avoids long sequences of small diffusive hops commonly used to bring
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particles to collisions, by enabling large super-hops sampled from exact (semi)analytical so-
lutions for diffusion Green’s functions (propagators) in spatially isolated protective regions
each containing just one or two particles. The FPKMC algorithm is exact to the extent that
the system’s stochastic trajectory is sampled from the exact diffusion-reaction Master Equa-
tion for the N-particle system, to within the accuracy of the single- and two-body Green’s
functions. At the same time, for a range of simulations reported in the two papers, the
new algorithm is several orders of magnitude more efficient than the existing (approximate)
hopping-based algorithms.

In part I of this series we described the basic algorithmic ideas and elementary theory at
the basis of the FPKMC method. The algorithm was implemented for cube-shaped particles,
a simplifying case, and the ability of the new algorithm to overcome the bottleneck of low
particle density was demonstrated. In part II (this paper) we extended the new method to
considerably more complex simulations in which particle diffusion is just one among many
competing rate processes. We described generalizations and algorithmic components nec-
essary to handle systems with multiple particle species and multiple reactions, including
annihilation, clustering, emission, and particle birth and death. We focused on the case of
hard spheres that are more appropriate than the cubes for a multitude of intended appli-
cations. Handling hard sphere collisions as a first-passage process turned out to be more
complicated than in the case of cubes which necessitated a hopping-based approximation for
the pair propagators. The resulting solution to the sphere collision problem was found prac-
tical and efficient but raised a more general issue of combining the asynchronous event-driven
framework employed in FPKMC with the more traditional synchronous time-driven simula-
tions. Our successful implementation of time-driven pair propagators in FPKMC points to
hybrid time-driven/event-driven algorithms as a promising direction for future research.

The new implementation of the FPKMC algorithm has proven suitable for simulations
of damage accumulation in materials subjected to irradiation by high-energy particles. The
accuracy of the FPKMC algorithm was validated on several test problems by comparing
to traditional (object) KMC algorithms developed for diffusion-reaction simulations in the
continuum (BIGMAC) and on the lattice (LAKIMOCA). The new algorithm is shown to
perform well in a wide range of radiation conditions enabling, for the first time, simulations of
irradiated materials to large technologically relevant radiation doses (e.g., 10dpa) on a serial

workstation. Closing the gap between the short time horizon of traditional KMC simulations
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and long material life in the reactor required to gain several orders of magnitude in compu-
tational efficiency. In FPKMC, this gain is achieved entirely through an exact factorization
of the difficult N-body reaction-diffusion problem into one- and two-body problems.

With its efficiency, the new FPKMC method can make a significant impact on the impor-
tant area of accelerated material testing for next-generation nuclear reactor designs. There
is a strong synergy between atomistic KMC simulations and experiments to be carried out
in accelerated testing facilities. The accuracy of an atomistic KMC model can be improved
by expanding its mechanism catalog and obtaining more accurate values of model param-
eters. For this purpose, computationally efficient KMC simulations can be used to explore
and identify experimental conditions in which accelerated material tests would be most in-
formative for model validation, e.g. most sensitive to a particular mechanism or model
parameter. Furthermore, the same simulations can be used to fine-tune the KMC models
for conditions typical of real reactors. The approximate scaling predicted in our FPKMC
simulations provides exactly the right kind of connection between simulations and experi-
ments. Once the accuracy of the material models is established, FPKMC simulations can be
used to extrapolate from accelerated material tests into relevant but inaccessible conditions
of nuclear reactors without relying on any approximate scaling. To quantify reliability of
such computational extrapolations, FPKMC simulations can be used to assess the uncertain-
ties in computational predictions of accumulated damage given the uncertainties in model
parameters, similarly to what is routinely done in climate modeling. Ultimately, efficient
KMC simulations can and should become an integral component of reliable material testing
programs.

In additional to irradiated materials used in nuclear power plants, semiconductor indus-
try, space and medicine, the new method may prove enabling in other areas of sciences,
engineering and finance. One particularly attractive application for the new method is in
cell biology where multiple reaction-diffusion mechanisms conspire to produce a wide vari-
ety of specific biological responses. Parallelization of the FPKMC algorithm could further
extend length and time scales accessible to diffusion-reaction simulations, even though the

asynchronous event-driven algorithms are notoriously difficult to parallelize [12].
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